

GSFC · 2015

The January 2015 Repressurization of ISS ATCS Loop B – Analysis Limitations and Concerns

Eugene Ungar and J. Gary Rankin NASA/Johnson Space Center

Mary Schaff and Marcelino Figueroa
Boeing Space Systems

Overview

- The problem
- What we said
- What was real
- Lessons learned

The Event

- On January 14, 2015 an ammonia alarm was sounded on the International Space Station
- Spurious accumulator level reading on the Node 2 LTL (low temperature internal water loop) accumulator indicated possible leak from external ammonia loop
- Ammonia leak protocol
 - Stop external active thermal control system (EATCS) ammonia pump
 - reduces pressure at the heat exchangers
 - Isolate ammonia tank assembly (ATA) which is used as a system accumulator
 - isolates the large (~130 kg or 300 lb) reservoir of ammonia
 - Vent nitrogen from one of the isolated radiator flow paths
 - Open system to the now-vented radiator flow path
 - creates ullage in the system
 - System becomes two-phase and will reach the saturation pressure associated with the temperature of the warmest fluid

Aftermath

- Volume calculations (the volume of the radiator passage the pump accumulator ∆ volume) showed that 18 liters (0.64 ft³) of ammonia vapor had been formed
 - 0.1 kg (0.21 lbm) of vapor
 - requires 120 kJ (110 BTU) of energy
 - raise 1 liter of water 28°C
 - energy is available in the fluid itself and in the lines and fittings
- Over time the fluid pressure adjusted to the highest temperature in the loop (endcone lines)
 - the liquid/vapor interface was located there
 - the local temperature set the pressure
- The pressure beat over the orbit as the average loop temperature (and average liquid density) cycled - moving the fluid between cooler and warmer parts of the endcone)
 - 905 to 950 kPa >> 21.7 to 23.3°C (71-74°F)

liquid

Node 2 Endcone Layout / IFHX Locations

Display Navigation Hero 1 Shuttle Station Global Apps Windows Tools Print Config Help Master file Edit View Tools Source Windows Belp 古四百 ゆりゅう ← ETCS_B_REVM_Press Subsystem: iss-thermal Flight: ISS047H ISP Server: MCCH-mer5-MIS AOS - ETCS_Loop8_Rad1_RBVM1_Out_Press 955.00 015:14:37:26 945.00 922.79979 P1TE135R0101P 935.00 924.912 954.48810 925.00 915.00 - ETCS_Loop8_Rad2_RBVM1_Out_Press 945.00 \mathbf{p} 935.00 PITE15SRO101P 925.00 910,124 915.00 905.00 - ETCS_LoopB_Rad2_RBVW2_Out_Press 955.00 D 945.00 P1TE16SR0101P 935.00 922,800 925.00 915.00 ETCS_LoopB_Rad3_RBVN2_Out_Press 980.00 970,00 P1TE185R0101P 960,00 950.263 950.00 940.00 2015_015:12:00:00 2015_015:13: 10:00 2015.015:15:90:00 2015_015:16:30:00 CMT 20 6 DE ISP timetags do not agree with GMT - some data may be incorrect 015:15:11:14.246 ISP timetags do not agree with GMT - some data may be incorrect 015:15:19:01.448 ISP timetags do not agree with GMT - some data may be incorrect. 015:16:04:02:543 ISP timetags do not agree with GMT - some data may be incorrect

Recovery

- Because Loop B was stagnant, the liquid in the lines outside of the heated endcones was free to drop to the local environment temperature
- Of most concern was the boom tray temperature, which is the fluid closest to the endcones (where the heat exchangers reside)
 - during repressurization, this fluid would fill the endcones, then the heat exchangers
- Passive thermal analysis of boom tray temperatures
 - fluid upstream of Node 3 heat exchanger was -29°C (-20°F)
 - fluid upstream of Node 2 heat exchangers was 0°C (32°F)
- 18 liters (0.64 ft³) of vapor would fill 40 m (135 ft) of 1 inch tubing
 - not enough to completely fill the endcones
 - we could not know which endcone lines were filled and which were empty

Limitations

- We did not want to send subfreezing ammonia to the heat exchangers mounted on Node 2 (Node 2 LT, JEM MT and APM LT)
 - 0°C fluid in boom trays
 - 2.8 liters (0.1 ft³) of volume in shortest leg to Node 2 LT
 - required dwell time of four hours to increase temperature to 5.5°C 42°F (required margin)
- We did not want to send subfreezing ammonia to the Node 3 LT heat exchanger
 - -29°C (-20°F) fluid in boom trays
 - 0.8 liters (0.03 ft³) of volume in shortest leg to Node 3 LT
 - required dwell time exceeded 12 hours to increase temperature to 5.5°C 42°F

Previous PMA Recovery Procedure

- Open ATA to system
- Pressurize enough to introduce enough liquid into system to fill the shortest leg (from boom tray to HX)
- Dwell to allow fluid to warm to endcone temperature
- Repeat
- With 0.8 liters (0.03 ft³) critical volume and dwell time
 >12 hours, this would have required more than 10 days

6

Idea

- Could we show that freezing would not occur even if cold ammonia entered the Node 3 heat exchanger?
 - Node 3 LTL H/X was colder than the US Lab MTL H/X
- That would allow us to use
 - only the limit of the Node 2 endcone volume 2.8 liters (0.1 ft³)
 - a shorter dwell
 - 4 hours since the boom tray upstream of Node 2 was at 0°C

Current Configuration

In the Heat Exchanger

- Heat exchanger effectiveness is near unity
- When cold inflow begins, the water temperature at the exit (LHS) is 80°F
- As cold flow has passes through the core, the water exit temperature drops
- Minimum water exit temperature occurs when entire core has experienced cold flow

At the Heat Exchanger Water Exit

- Ammonia is as cold as -20°F
- Water is colder than 80°F

- Core metal temperature will be determined by relative magnitude of water and ammonia heat transfer
 - UA_{water}>UA_{ammonia} so core temperature will be closer to the water temperature than to the ammonia temperature

Two Results

- Detailed SINDA/FLUINT model indicated that the minimum metal temperature was >15°C (60°F)
- Hand calculation

$$35.3^{\circ}F = 1.8^{\circ}C$$

Flowing IFHX Model Schematic Normal Operation

Water (boundary plena)

1st Node Metal Temperature

Why The Difference? (in Hindsight)

- The SINDA/FLUINT model took the heating from warm metal into account
 - ammonia was warmed to -25°C (-13°F)
 - but that was not the largest effect
- The model element size was 0.2 inches
 - because the ammonia flow was so low (about 100:1 ratio), all the heat transfer took place in the first element or two
- The model was returning the <u>average</u> metal temperature within the first element, not the <u>minimum</u> temperature (which would occur at the entrance)
- We were safe to proceed despite the difference in the results because even the conservative hand calculation showed positive margin

Ammonia Inlet Temperature

The Right Answer

Hand calculation

The Home Stretch

- 2.8 liter (0.1 ft³) insertions on 4 hour centers were begun
- System hard packed after 15.7 liters (0.56 ft³) of ammonia inserted (vs. 17.9 liter - 0.64 ft³ initial estimate)
 - based on ATA quantity change
 - process took 24 hours
- System was ready to be restarted 4 days after ammonia alarm event

Lessons Learned

- Detailed Thermal Math Models are most accurate when they are used for the purpose for which they were developed
- Operating models outside of their planned range is risky
- Hand calculations can be used
 - as a check on the detailed model
 - to gain confidence that the chosen path is safe

Backup

Normal Operating Conditions

ITCS water temperatures are even warmer

Starting Conditions for Refill

- Node 3 LT HX was flowing and was warm
- Node 2 LT HX was flowing
- JEM MT HX was flowing
- APM LT HX was isolated and its heaters were on

How Did We Know That There Was No Leak?

- Accumulator spike was not right
 - instantaneous accumulator level change is indicative of a large leak
 - a large leak would have stroked the accumulator fully
 - p_{ATCS}>>p_{ITCS}
- There was no instantaneous change in loop pressure
 - changes in gas cap accumulator quantity always result in changes in loop pressure

Initial Idea

- Since Node 3 LT was flowing and warm,
 - pressurize accumulator to a pressure below one that would force liquid into the Node 3 LT HX
 - observe the Node 2 endcone volume limit of 2.8 liters (0.1 ft³)
 - wait for required dwell time
 - repeat
- One successful push was obtained but it was clear that we would soon run out of pressure headroom
 - as we pushed more liquid into the system, the liquid/vapor interface would be forced into warmer areas, creating higher pressures
 - Node 3 LT-induced saturation pressure limit would be reached

Node 3 Endcone and Heat Exchangers

For Node 3:

Temp $X \sim 26 C$ (telemetry)

Temp $Y \sim 18-20$ C (est. shell temp)

Temp $Z \sim -29C$ (analysis)

Result: NH3 vapor in IFHX, cold ammonia not too far away

Protection of the Node 3 LTL IFHX was driving timeline

Temp = X

Temp = Z

Pressure Increase Scenario

- Consider the loop pressure to be constant at 1000 kPa
- If the loop pressure is increased
 - Once p>1200 kPa condensation will occur
 - condensation can be limited by available heat transfer or vapor inflow
 - Once all vapor is condensed, liquid ammonia will be pulled into the heat exchanger core
 - 19:1 density ratio

Pressure Increase Scenario

Liquid inflow will be limited by the 0.032 inch orifice

orifice ∆p (psid)	orifice ∆p (kPa)	m dot (lbm/hr)	minutes to fill core
1	6.9	7	9
5	34.5	16	4
10	69.0	23	3

orbital cycle Δ is ~45 kPa

Water Temperatures

TEMPLATE

Heat Exchanger Performance

- water values used directly from vendor data
- ammonia values developed from basic principles
 - pure laminar flow does not allow for UA enhancement from serpentine nature of flow path

Minimum Nussert number operation
 hA = constant over given flow range

Simplified Model Schematic

Flowing IFHX Model Schematic Normal operation

Water (boundary plena)

IFHX

Loop Configurations

